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Absolute pitch ability, cognitive style and autistic traits: a neuropsychological
and electrophysiological study

by Teresa WENHART

Absolute pitch (AP) is defined as the rare ability (<1% in the general population) to
name or produce a tone without the use of a reference tone. It is much more common
among professional musicians and said to depend on both - early music education
under the age of 7 and genetic factors. By contrast, relative pitch ability is an also
highly trained skill of musicians to analyse and sometimes explicitly name relations
of tones (i.e. intervals). Recently, two studies have reported higher autistic personal-
ity traits in absolute pitch musicians and several case reports and small sample stud-
ies have frequently found absolute pitch among autistic individuals. Furthermore,
similarities in brain connectivity were reported in several studies pointing towards
a special relation between segregation and integration ability of the brain in these
two populations. However, it is still unclear how this co-occurence can be explained
and direct comparisons of the populations or investigations of the relation between
absolute pitch and autistic traits are missing.
Autism is characterized by a set of neurodevelopmentally caused symptoms mainly
affecting social domains. Autistic individuals show problems with social interac-
tion and communication, repetitive behaviours, restrictive interests and hyper- or
hyposensitivities of the senses. Several theories of autism try to explain non-social
(and sometimes social) symtoms with a tendency for bottom-up processing path-
ways, enhanced perceptual sensitivity and a focus on details. These theories com-
prise the weak central coherence theory (WCC), the enhanced perceptual functioning theory
and the hypersystemizing theory. The critical period of absolute pitch development
overlaps with a period of detail-oriented perception during normal child develop-
ment. Hence, a detail-oriented ’‘cognitive style‘’, i.e. the predisposition to process
incoming sensory information in a certain way, might serve as a common frame-
work.
The present thesis aims at investigating neurocognitive and neurophysiological char-
acteristics of autism in healthy absolute pitch and relative pitch possessors and their
relation to autistic traits in the same population. A total of 31 AP and 33 RP pro-
fessional musicians and music students participated in a huge comprehensive study
which contained resting state electroenzephalographic measurements, assessment
of autistic symptoms (Autism Spectrum Quotient, Questionnaire) and auditory and
visual experiments investigating cognitive style. The analyses resulted in three pub-
lications. In general absolute pitch possessors showed higher autistic traits com-
pared to relative pitch possessors replicating the results of recent studies.



xx

Publication 1 reports that absolute pitch possessors outperform relative pitch
possessors in an interleaved melody recognition test, which serves as an auditory
embedded figures test. Visual and auditory embedded figures tests are often used
in the autism literature in order to investigate cognitive style. Absolute pitch posses-
sors seem to have an advantage in the test, which points towards enhanced sensory
sensitivity for bottom-up details or availability of additional perceptual cues (i.e.
pitch label) in these subjects.
Publication 2 reports inconsistent results on auditory and visual hierarchical stim-
uli experiments. Participants had to respond to hierarchically constructed letters or
melodies and either judge characteristics of the detail or the contextual level of the
stimuli. In conflicting (incongruent) situations, interference effects of the unattended
level were calculated. Analyses revealed inconsistent interference effects selectively
appearing for certain types of measurements (reaction times, accuracy, combined
score). The significant associations obtained reveal that absolute pitch possessors,
when compared to relative pitch possessors, tend to exhibit a more detail-oriented
processing with less contextual integration. However, missing effects on related tar-
get parameters might be caused by methodological problems related to investigating
cognitive style with hierarchical stimuli.
In publication 3 a graph theoretical approach is used to analyse brain connectivity
networks (connectivity estimate: weighted phase lag index) of the resting state elec-
troenzephalographic measurements of absolute and relative pitch possessors. Graph
theory is especially suited to compare the efficiency ot a brain’s information pro-
cessing capability. A normal human brain exhibits an efficient network of highly
connected modules (segregation) with few long-distance connections (integration).
The analysis shows that absolute pitch possessors are equipped with a widely un-
derconnected brain with reduced integration and segregation as well as reduced
interhemispheric connections. Parts of these results were related to autistic traits.
In conclusion, the present thesis extends the literature on absolute pitch and espe-
cially the vague relation to autism: the results on neurocognitive and brain network
differences partly overlap with the effects observed in autism or are associated with
autistic traits in absolute pitch possessors. This is first evidence, that absolute pitch
and autism might be related to each other through similarities in cognitive style and
brain underconnectivity (integration deficit hypothesis). Inconsistencies within the
results further reflect the heterogeneity of absolute pitch as a phenomenon and em-
phasize the need for subgroup analyses and longitudinal studies in the future.
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Absolutes Gehör, kognitiver Stil und autistische Persönlichkeitszüge: eine
neuropsychologische und elektrophysiologische Studie

von Teresa WENHART

Das Absolute Gehör ist definiert als die seltene Fähigkeit (<1% in der Bevölkerung),
einen Ton ohne Verwendung eines Referenztons zu benennen oder zu erzeugen.
Die Prävalenz bei professionellen MusikerInnen ist dabei gegenüber der Allgemein-
bevölkerung deutlich erhöht. Nach bisherigem Forschungsstand ist die Entwick-
lung dieser Gabe vermutlich abhängig sowohl von frühem musikalischem Training
vor dem Alter von 7 Jahren, als auch von genetischen Faktoren. Relatives Gehör, die
Fähigkeit der meisten MusikerInnen, die Beziehungen von Tönen (d.h. Intervalle
und Melodien) zu analysieren und manchmal explizit zu benennen, ist dagegen bei
den meisten MusikerInnen vorhanden und trainiert. Kürzlich haben zwei Studien
von vermehrten autistische Persönlichkeitsmerkmale bei MusikerInnen mit abso-
lutem Gehör berichtet. Mehrere Fallstudien und Studien mit kleinen Stichproben
haben häufiges Vorkommen von absolutem Gehör bei autistischen Personen fest-
gestellt. Darüber hinaus wurde in mehreren Untersuchungen beider Populatio-
nen ähnliche Gehirnkonnektivität in Bezug auf Über- und Unterkonnektivität des
Gehirns berichtet. Es ist jedoch noch unklar, wie dieses Zusammentreffen erklärt
werden kann. Direkte Vergleiche der Populationen oder Untersuchungen des Ver-
hältnisses von absolutem Gehör und Autismus stehen noch aus.
Autismus umfasst eine Reihe von Entwicklungsstörungen, deren Symptome haupt-
sächlich soziale Bereiche betreffen. Autistische Personen zeigen Probleme mit so-
zialer Interaktion und Kommunikation, repetitive Verhaltensweisen, restriktive In-
teressen und Hyper- oder Hyposensitivitäten der Sinne. Verschiedene Theorien
des Autismus versuchen, nicht-soziale (und manchmal auch soziale) Symptome mit
einer Tendenz zu Bottom-up-Verarbeitungswegen, gesteigerten Wahrnehmungsfähig-
keiten und einer Fokussierung auf Details zu erklären. Zu diesen Theorien gehören
die Theorie der schwachen zentralen Kohärenz, die Theorie der gesteigerten Wahrnehmungs-
funktionen und die Theorie des Hypersystematisierens. Da sich die kritische Periode
für die Ausbildung des absoluten Gehörs mit einer Periode der detailorientierten
Wahrnehmung während der normalen kindlichen Entwicklung überschneidet, kön-
nte ein detailorientierter "kognitiver Stil", d.h. die Veranlagung, eingehende sen-
sorische Informationen auf eine bestimmte Weise zu verarbeiten, als gemeinsamer
Rahmen für die Erklärung der Ähnlichkeiten dienen.
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Die vorliegende Arbeit hat zum Ziel, neurokognitive und neurophysiologische
Eigenschaften von Autismus bei gesunden absolut (AP)- und relativ (RP) hörenden
MusikerInnen und die Beziehung dieser Eigenschaften zu autistischen Merkmalen
in derselben Population zu untersuchen. Insgesamt nahmen 31 AP- und 33 RP-
BerufsmusikerInnen und Musikstudierende an einer umfangreichen Studie teil, bei
der elektroenzephalographische Messungen des Ruhezustands des Gehirns, Mes-
sungen autistischer Symptome (Autismus Spektrum Quotient, Fragebogen) und au-
ditorische und visuelle Experimente, die den kognitiven Stil untersuchen, durchge-
führt wurden. Im Allgemeinen zeigten Absoluthörende mehr autistische Merkmale
als Relativhörende, was die Ergebnisse aus vorherigen Studien repliziert.
In Publikation 1 übertrafen die Absoluthörenden Relativhörende in einem Test zur
Erkennung verschachtelter Melodien, einer auditiven Version der Embedded Figures
Tests (Tests mit verschachtelten visuellen oder auditorischen Elementen). Embedded
Figures Tests werden in der Autismusliteratur häufig verwendet, um den kognitiven
Stil zu untersuchen. Absoluthörende haben in diesem Test offenbar einen Vorteil,
der möglicherweise auf eine verbesserte sensorische Empfindlichkeit für Bottom-
Up-Details oder die Verfügbarkeit zusätzlicher Wahrnehmungshinweise (z.B. Ton-
Label-Assoziationen) bei diesen ProbandInnen zurückzuführen ist.
In den Experimenten der zweite Publikation mussten TeilnehmerInnen auf hierar-
chisch aufgebaute Buchstaben oder Melodien reagieren und entweder Merkmale
der Detail- oder der Kontextebene der Reize beurteilen. In inkongruenten Situa-
tionen wurden Interferenzeffekte der unbeachteten auf die beachtete Ebene berech-
net. Analysen ergaben inkonsistente Interferenzeffekte, die für bestimmte Arten von
Messungen (Reaktionszeiten, Genauigkeit, kombinierte Bewertung) und Modalität
(Hören, Sehen) selektiv auftraten. Die beobachteten Effekte legen nahe, dass Ab-
soluthörende im Vergleich zu Relativhörenden tendenziell eine stärker auf Details
ausgerichtete Verarbeitung und eine weniger kontextbezogene Integration besitzen.
Jedoch könnte das Fehlen ähnlicher Effekte bei vergleichbaren Zielparametern bed-
ingt sein durch Probleme, den kognitiven Stil mit hierarchischen Stimuli zu unter-
suchen.
In Publikation 3 wurde ein graphentheoretischer Ansatz verwendet, um die Netz-
werkstruktur des Gehirns aus Konnektivitätsschätzungen (gewichteter Phasenver-
zögerungsindex) der elektroenzephalographischen Daten im Ruhezustand von Ab-
solut- und Relativhörenden zu analysieren. Ein typisches menschliches Gehirn weist
ein effizientes Netzwerks aus stark in sich vernetzten Modulen (Segregation) und
wenige Querverbindungen zwischen diesen Modulen (Integration) auf. In der vor-
liegenden Studie zeigten Absoluthörenden jedoch gegenüber Relativhörenden weit-
estgehend reduzierte Integration und Segregation sowie reduzierte interhemisphär-
ische Verbindungen, was für ein Integrationsdefizit ähnlich der Unterkonnektivitäts-
Hypothese bei Autismus spricht. Teile der Ergebnisse korrelieren mit autistischen
Zügen innerhalb derselben Stichprobe.
Zusammenfassend erweitert die vorliegende Dissertation den Forschungsstand zum
absoluten Gehör und insbesondere dessen Beziehung zu Autismus durch Ergeb-
nisse zu neurokognitiven und Hirnnetzwerkunterschieden. Die Ergebnisse decken
sich teilweise mit den bei Autismus beobachteten Effekten oder korrelieren mit autis-
tischen Merkmalen bei Absoluthörenden. Dies ist der erste Hinweis darauf, dass ab-
solutes Gehör und Autismus durch Ähnlichkeiten im kognitiven Stil und in der Kon-
nektivität des Gehirns in Verbindung stehen könnten. Die Inkonsistenzen der Ergeb-
nisse spiegeln darüber hinaus die Heterogenität des absoluten Gehörs als Phänomen
wider und unterstreichen die Notwendigkeit für Analysen von Subgruppen von Ab-
soluthörenden sowie für Längsschnittuntersuchungen.
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Chapter 1

Introduction

Absolute Pitch has been a matter of scientific interest for over 100 years [1] and even
in the general population it receives constant attention as for its fascinating appear-
ance. For non-absolute pitch possessors it seems hardly understandable, why some-
one can easily name a musical tone or in extreme cases even natural sounds and
noises without looking into the sheet music or using any tonal reference. The phe-
nomenon therefore receives similar admiration as other unexplainable special abili-
ties, e.g. eidetic memory or hypercalculation. This often glamourizes absolute pitch
possessors with the status of a genius.

1.1 Absolute Pitch

1.1.1 Definition and Prevalence

The ability to name or produce a musical tone without the use of a reference tone
(hence the term ‘absolute’), e.g. the tone of a tuning fork or a comparative tone of
a musical instrument, is called absolute pitch ability or short absolute pitch [1, 2]. If,
for example, two tones with a distance of 4 semitones (ST) to each other are pre-
sented audially, relative pitch possessors (RP’s, i.e. trained musicians without abso-
lute pitch) are able to judge the pitch distance (relation of pitch height (Hz)) between
tones, while absolute pitch possessors (AP’s) can additionally name the single tones
as belonging to a musical tone category (pitch chroma, e.g. “C” or, “F”, see Figure
1.1). Furthermore, while RP’s would judge the interval independently of the under-
lying single tones (purple vs. red indicated intervals in Figure 1.1) as “major thirds”,
AP’s also distinguish between different thirds, e.g. a major third between “C” and
“E” (purple) and a third between “F” and “A” (red). Some AP’s might, however, not
be able to state in which octave (C, C2, C3 etc.) the interval is played (see Figure 1.1
for explanation). Relative Pitch is a very common and usually explicitly trained abil-
ity among professional musicians with variable proficiency. In contrary, only very
few musicians exhibit absolute pitch ability.

While the phenomenon is rare in the general population (<1%, [1, 4, 5]), it is,
however, much more common among musically trained people and especially pro-
fessional musicians. Prevalence estimations for professional musicians range from
7.6% [6], 12.2% [4] and 15% [7] up to 24.6% at some institutions [6]. Furthermore,
the prevalence seems to be higher in populations of Asian ethnic background [4, 6,
8, 9]. It is still under debate, whether the ethnicity effect is due to the influence of
tonal mother tongue on the acquisition of absolute pitch early in life [8, 9] or due to
differences in musical education methods [4].
Finally, exceptional absolute pitch abilities found in case reports and small sample
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C  D  E  F  G  A  H  C²D²E²F² G² A²H²C³ 

octave 

major thirds (4 ST) 

interval 

tone 

relative pitch 

absolute pitch 

Pitch height 

Pitch chroma 

“C and E, 
F and A 
thirds” 

“C” “also C” 

“higher” “lower” 
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FIGURE 1.1: Explanation of absolute versus relative pitch strategies.
RP’s judge pitches of tones relative to other tones, i.e. they compare
the difference in pitch height (= intervals; purple, red). AP’s perceive
an additional quality: pitch chroma, i.e. the according to music the-
ory verbally labeled categories (“C” -> “H”) of single tones [3]. RP’s
would judge the aurally presented intervals (purple vs. red) inde-
pendently of the underlying tones as “major thirds”; AP’s might as
well be able to judge the intervals as major thirds, but also distin-
guish between different thirds, e.g. a major third between “C” and

“E” (purple) and a third between “F” and “A” (red).
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studies suggest higher prevalence of absolute pitch in special populations, e.g. con-
genitally blind persons [10, 11], Williams syndrome [12, 13] and autism [14–19]. The
latter will be of major topic within this thesis.

1.1.2 Phenomenology

Looking closer onto the ability of naming or producing pitches absolutely, the ability
seems far less "perfect" than its appearance. Not only there is inter-individual vari-
ability in the proficiency of absolute pitch possessors (e.g. [20]), also the individual
performance depends on key [20–22], timbre [22, 23], musical activity [24] and age
[21]. Often subjects perform better on white compared to black keys [20, 21, 24] and
perceive tones higher than they actually are, which leads to undershooting in ad-
justment tests and ratings of one or two semitones too high in naming tests [21, 24].
The tendency for a mistuned absolute pitch template increases with increase of age
and when musical activity declines [21, 24]. A high rate of octave errors indicating
no differences in octave identification between APs and RPs (see [1] for a review) is
also often reported. This stresses the view that absolute pitch possessors addition-
ally and dominantly perceive pitch chroma while relative pitch possessors rely on
pitch height comparisons in the judgments of tones [22]. Furthermore, the internal
template of tone-label associations of absolute pitch possessors can in the short term
be distorted by listening to mistuned pieces of music [25]. Usually absolute pitch
possessors with higher accuracy are also faster in pitch naming tests [20].
Many absolute pitch possessors report having problems to sing or play in tune or
to play the correct notes, when it is required to transpose a melody or piece of mu-
sic or to play in historic tune. Therefore absolute pitch possessors might lack the
ability of singing respectively playing based on intervals (relative pitch) instead of
based on absolute pitch cues. Absolute pitch possessors indeed performed weaker
in interval labelling if the first note of the interval was mistuned [26]. The same is
true for melody comparison (in terms of sameness of intervals), if the melodies are
transposed into different tonalities [27]. However, when intervals are not in unusual
tuning, absolute pitch possessors outperform relative pitch possessors independent
of timbre, key or if a tonal context was given before [28]. These findings suggest, that
absolute pitch possessors rely on pitch chroma and the corresponding pitch labels in
pitch interval judgments and can outperform relative pitch possessors with this ad-
ditional cue. If, instead, intervals or melodies are presented in unusual appearance
(e.g. differing tuning), interval recognition might be hampered, because tone-label
associations are weak or irritating.

1.1.3 Acquisition - Genes versus Environment

Most studies suggest that absolute pitch possessors start musical training early in
life and on average before the age of 7 years [4, 6, 8, 9, 29]. While explicit training
of absolute pitch ability seems to be possible in children at the age of 3-6 years [30–
33], to date no study has succeeded to train adults in identifying or producing tones
absolutely [32]. Furthermore, some studies also found latent absolute pitch ability
in children of ages 3 to 12 years independent of prior musical training [34, 35] sug-
gesting a relation of absolute pitch perception and developmental phase. However,
latent AP abilities have also been reported in adults [36, 37]. Many authors in favor
of the so called early learning theory argue, that the age effect speaks for a sensitive
period for absolute pitch [7, 33, 38–41], during which sensory learning of tones and
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tone names is required to develop or retain absolute pitch ability. There are mainly
two positions with respect to the sensitive period aspect:
First, the sensitive period for absolute pitch temporarily overlaps with the sensi-
tive period for speech development [8, 9, 42]. Therefore the development of abso-
lute pitch ability might be critically bound to speech development and learning of
speech-tone labels during this period. This is also often used as an explanation for
the higher prevalence of absolute pitch among musicians with Asian ethnic back-
ground as they have tonal mother tongues [9].

Absolute 
pitch 

genetic 
factors 

early 
onset/critical 

period 

musical 
training 

brain 
development 

ethnicity 

musical 
education 
method 

FIGURE 1.2: Influences on the acquisition of Absolute Pitch. If and
to what extent an individuum exhibits absolute pitch ability depends

on various factors indicated with arrows.

Second, the perceptual shift theory stresses that the age span for the development
of absolute pitch belongs to a developmental phase (see section "From details to
context - developmental shift") during which children exhibit a tendency towards
feature based perception [1, 31, 40, 41, 43]. Around the age of 6 to 7 years a devel-
opmental shift from a feature-based processing to a more holistic, integrative and
relative processing of incoming information happens [39, 40, 43] and the develop-
ment of absolute pitch becomes less likely or even impossible [1, 43, 44]. For this
reason, infants at the age of 8 months use absolute pitch information in a statistical
learning paradigm of tone sequences, while adults with and without musical train-
ing preliminary solve the same task with the help of relative pitch [39, 40, 42].
Regardless which of the viewpoints one favors, early musical training before age 7
does not always lead to the development of absolute pitch [7]. Rather, a genetic pre-
disposition seems to be necessary as well ([6, 7, 45], see Figure 1.2 for an overview
over influences on the acquisition of AP).
Furthermore, with respect to the above mentioned appearance of absolute pitch abil-
ity in autism and Williams syndrome (see section 1.2), studies among both develop-
mental conditions have suggested a less important role of age of onset of musical
training in the acquisition of absolute pitch ability in these populations [12, 14]. Even
if the comparable small samples do not allow for precise estimations of average age
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of onset or prevalence in these conditions, the extremely good pitch naming abilities
and late onset of musical training of the reported cases strengthen the view of a re-
lation between absolute pitch and the genetical and neurodevelopmental aspects of
these disabilities. Compared to neurotypical absolute pitch possessors, the sensitive
period for development of absolute pitch might be prolonged [12, 14]. Interestingly,
a substance which might be at risk of causing autism during pregnancy, valproate,
has been shown to enable adults to acquire absolute pitch later in live and therefore
might reopen the sensitive period for absolute pitch [46].
In conclusion, absolute pitch ability seems to be an excellent model to research the
interaction of genes and environmental influences (as e.g. learning) on the acquisi-
tion of cognitive-perceptual abilities and their neural fundamentals [47].

1.1.4 Neurocognitive frameworks of absolute pitch ability

Within the neuroscientific and psychological community it has been a matter of de-
bate at which of the stages of the auditory pathway in the nervous system abso-
lute pitch possessors differ from relative pitch possessors. The current chapter will
shortly introduce the basic features of the auditory pathway from input of sounds
(inner ear) to perception (neocortex). The current state of the neuroscientific and
neurocognitive literature will then be summarized and evaluated with respect to
the most famous theory of absolute pitch - the two component theory [47].

Auditory processing in the human brain

Beginning at the outer ear the auditory stimulus travels through the ear channel
into the middle ear, where the sound wave is amplified by the three auditory ossi-
cles malleus, incus and stapes. Stapes transduces the resonance onto the oval win-
dow, which results in a periodic movement of the liquids and the basilar membrane
in the cochlea. The outer and inner hear cells of the basilar membrane within the
cochlea are then tonotopically stimulated by the resonance wave and the movement
of basilar membrane and (passively) tectorial membrane. This process transforms
the periodic sound pressure information via mechanical transformation into electri-
cal signals. From this step on, the auditory stimulus is transmitted via the auditory
nerve to the brain stem and further to the subcortical and cortical regions of the
brain. At the level of the brainstem, basic feature extraction and analysis occur, e.g.
sound intensity and periodicity, timbre, interaural differences in runtime of the sig-
nal, and auditory reflexes (e.g. startle reflex). The thalamic relay station, the medial
geniculate nucleus, serves as an attentional filter system and processes harmonicity
of the auditory signal. The signals of the geniculate nucleus are directly transmitted
to the emotion centers of the brain (e.g. amygdala, orbifrontal cortex) already at this
early processing stage. Detailed analysis of pitch, timbre, intervals, melodies, musi-
cal syntax, musical memory and emotional content etc. is provided by projections
of the thalamic nuclei to the primary and secondary auditory cortex (AC) as well
as further pathways to higher cognitive and multisensory integration areas. Besides
these bottom up pathways, top down projections also provide feedback loops from
cortical areas to lower cortical, subcortical or even brainstem areas (see e.g. [48–52]).

The two component theory of absolute pitch

Perhaps the most famous neurocognitive account of absolute pitch is the two
component theory [47]. It proposes that two stages comprise absolute pitch: (1) early
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(passive) categorical perception or classification of pitches and (2) late pitch labelling
respectively an associative memory process.
During the early stage pitches are passively and ultimately perceived as belonging
to certain categories, i.e. pitch chroma information of the pitches is retrieved (see
Figure 1.1 ). Labelling of the pitches with the correct verbal names (e.g. "A", "C-
sharp") will then follow by comparing the pitch chroma information with an inter-
nally stored pitch template. Notably, the labeling process does not necessarily have
to be verbal. Imagery or sensorimotor information could (e.g. in musicians who
learn music by heart instead of with sheet music) serve as labels or coding strategies
[53, 54].
As AP possessors usually do not have to put effort in naming the notes, these pro-
cesses run automatically. Therefore an active comparison of the target pitch with
a memorized pitch, e.g. the tuning note “A” that many musicians know by heart,
rather reflects a specific strategy to solve an AP naming task with relative pitch in-
formation. In contrast, the pitch label information of AP possessors is available as
naturally as most seeing people can name gross categories of colors as e.g. being
"red" or "blue (given the person is not color-blind).
With respect to the anatomical representation of the two stages within the auditory
pathway most studies have focused on the neocortex. Early psychophysical experi-
ments comparing AP and RP possessors had already revealed no differences in dis-
crimination of pitches [54], an ability, that does not only depend on cortical, but also
subcortical levels within the auditory pathway [55, 56]. Further experiments could
show that labelling of tones might be the key difference between absolute pitch and
relative pitch perception of tones. For example, absolute pitch possessors do only
recall tones better than relative pitch possessors, if they can use the label informa-
tion of the tested tones [54, 57]. If, instead, the tested tones are above 5000 Hz [57]
or tones to compare differ in less than one semitone [54], absolute pitch labels are
usually not available for AP possessors. Missing the label information AP posses-
sors did not have an advantage in the pitch memory test anymore [54, 57]. With the
information from these studies one might favor the idea that differences occur on
cortical level and more specific at comparably later stages of the auditory pathway,
i.e. higher cortical areas. This is most strongly supported by the fact that speech pro-
cessing also depends on cortical processes, especially in regions in the left temporal
and frontal lobes (see e.g. [58, 59]).
Various studies focussing on the neocortex have provided evidence for and against
either the early or the late neurocognitive component or for the joint two compo-
nent model. These neurophysiological as well as neuroanatomical investigations
are summarized within the next sections.

Neurophysiological evidence - temporal dynamics

By means of electroencephalography, brain processes can be monitored with the
use of electrodes that measure brain activity of large populations of neurons on the
scalp. This method is particularly useful to investigate temporal dynamics of brain
processes, as it exhibits an excellent temporal solution. However, in contrast spatial
resolution is relatively unprecise. A standard way of investigating brain processes
is to average over brain activity of several trials in which stimuli are presented. The
characteristic waveforms that arise shortly after the stimulus presentation, the so
called event related potentials or components (ERP), can then be compared between
groups. The earlier a waveform occurs after stimulus presentation (e.g. between
50-150ms), the more primitive or basic processes (e.g. attentional mechanisms, basic
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sensory processes) are assumed to be involved. On the other side, late components
often are interpreted as reflecting more complex cognitive processes, e.g. multisen-
sory integration, memory processes or whatsoever. A huge amount of studies has
tried to relate early (e.g. MMN, mismatch negativity, 100-250ms post stimulus) vs.
late (e.g. P300, about 300ms post stimulus) ERPs to early vs. late processing stages
in AP possessors to evaluate the two component theory (e.g. [60–65], for a review
see e.g. [66]).
While initially some studies had revealed differences with respect to early, i.e. en-
coding related perceptual components [64, 67–69], a range of other investigations
recently only found group differences with respect to late cognitive components [61,
63, 70, 71] if any or could not replicate the findings on early components [62, 65].
As a consequence these findings are currently seen as evidence for differences in
associative memory processes, reduced workload on tonal working memory or in-
creased multisensory processes (with respect to available codes for pitch classes) in
AP possessors. If and to what extend nevertheless neurophysiological differences in
early auditory processes exist between AP and RP possessors is currently unsolved.

Neuroanatomical evidence - involvement of different brain regions

Brain imaging methods like (functional) magnetic resonance imaging ((f)MRI) can
be used to unravel structural (grey and white matter) or functional (activation) dif-
ferences of brain regions. Compared to electroencephalography or similar electro-
physiological methods, MRI and fMRI provide high spatial resolution at the expense
of lower temporal resolution (in functional measurements). Several studies have
therefore made use of (f)MRI and related methods to yield insights into whether AP
possessors show differences in the size of auditory or higher cognitive areas in gen-
eral or higher activation within these areas during passive or active musical tasks
[72–87].
In 1995, Schlaug and colleagues started the discussion on brain regional differences
in absolute pitch possessors with their seminal paper on increased leftward hemi-
spherical lateralization of the planum temporale (PT), a region posterior to the pri-
mary auditory cortex [88]. PT is traditionally associated with language processing
and commonly exhibits a left-right asymmetry with bigger size in the left hemi-
sphere in right-handed subjects (see e.g. [58] for speech related hemispheric differ-
ences). This is said to result from language specialization of the left hemisphere in
right handers [59]. Schlaug and colleagues [88] have interpreted their finding of an
exaggerated size difference of the planum temporale between left and right hemi-
sphere in absolute pitch possessors as stemming from an increased PT in the left
hemisphere. However, later, several authors have criticized the interpretation of the
data and argued that the difference most likely was caused by a decreased size of
the right PT [72, 73]. A range of other studies has found structural or functional
differences with respect to absolute pitch ability in the right hemisphere [78, 82–84,
89]. However, initially there had been a great interest in the left hemisphere with
lots of findings from all neuroscientific domains [74–76, 79–81, 85, 86]. Interestingly,
Wengenroth et al. (2014, [83]) could show the involvement of both the right-sided PT
and the left “Broca’s area” in an AP-dependent brain network detected with fMRI.
The authors therefore suggested that AP pitch encoding might take place in the right
hemisphere, while pitch labeling is then conducted by the speech processing regions
in the left hemisphere [83]. Furthermore, Schneider et al. (2005, [90]) have found
evidence that the hemispheric lateralisation (gray matter volume) of the pitch sensi-
tive Heschel’s Gyrus is associated with the pitch perception preference of complex



8 Chapter 1. Introduction

tones in professional musicians: individuals decoding preferentially the fundamen-
tal pitch showed left-sided asymmetry while individuals with preference for spec-
tral pitch decoding showed right-sided asymmetry [90]. Increasing research has also
related this preference to instrumental choice, musical performance style and a “fin-
gerprint” (Schneider & Wengenroth, 2009, [91]) of the auditory cortex (for a review
see [91]).
Therefore the discussion of lateralization of the absolute pitch is of huge interest. In
general, the left hemisphere is said to process more detail-oriented, speech relevant
and temporally fine-tuned information (e.g. rhythm, speech, rapid pitch changes,
fundamental frequency), while the right hemisphere is specialized in spectral audi-
tory perception, processing of information in context (e.g. music in general, more
contextual information like melodies) and mental rotation (e.g. [90, 92–96], see [58,
91] for a review). For this reason, differences in the left hemisphere have often been
attributed to speech or cognition relevant differences of AP possessors (early cate-
gorical perception and verbal cognitive mechanisms), while right hemispheric find-
ings speak for perceptual differences, e.g. in pitch encoding, perhaps already ap-
pearing at early auditory processing stages (e.g. Wengenroth et al., 2014, [83]).
Many anatomically oriented studies on AP distinguish between differences in pri-
mary auditory cortex e.g. in STS (Superior Temporal Sulcus), STG (Superior Tem-
poral Gyrus) and MTG (Medio temporal Gyrus) [76, 78, 79, 82, 83, 85, 86], and
secondary and higher cognitive areas, e.g. frontal and parietal regions like dlPFC
(dorso-lateral prefrontal cortex), PT (planum temporale), IPL (inferior parietal lobe)
and IFG (inferior-frontal gyrus) [79, 81–83, 86–89, 97] both in the left and the right
hemisphere. Primary sensory areas of the brain process comparably more basic sen-
sory information, while secondary or multisensory integration areas perform higher
cognitive abilities and multisensory integration. This interpretation is again used
for or against early or late processing stages of absolute pitch ability. Compared to
electrophysiological studies evidence is therefore less clear in favor or against early
or late processes with respect to the two-component theory.

1.2 Absolute Pitch and Autism

Two studies have revealed eccentric personality traits and heightened autistic traits
in absolute pitch possessors [98, 99]. This is an interesting finding since the miracu-
lous appearance of absolute pitch ability can be compared to the genius-like savant
abilities [100] often reported in autism spectrum conditions and one of which is abso-
lute pitch [14–18, 101–105]. This chapter introduces the psychopathology of autism
and it’s most relevant theoretical frameworks and attempts to review the most im-
portant shared and distinct neuroscientific and cognitive findings concerning both
conditions.

1.2.1 Autism Spectrum Conditions

Autism spectrum conditions (ASC) encompass a set of neurodevelopmentally caused
difficulties in social cognition and communication, speech and cognitive develop-
ment, sensory processing and executive functions [106]. Depending on the severity
of the cases symptoms already occur before the age of 3 years. While initially the
prevalence was estimated at about 4 in 10.000 children [107] the rate has increased
to about 1/150 [108] or even more than 1/100 [109, 110]. Some, but not all of the
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affected people never develop speech and/or have intellectual disabilities. Key di-
agnostical symptoms comprise for example difficulties in social cognitive domains
like emotion recognition in faces and gestures, perspective taking, the understand-
ing of sarcasm and in "reading between the lines". Autistic people further have dif-
ficulties in coping with unexpected change, have narrow and intense special inter-
ests, show repetitive behavior and sensory hyper- or hyposensitivities (DSM 5, APA
2013). However, in contrary, some individuals show superior abilities alongside
their disabilities: savant skills [100], visuo-spatial abilities [111], rapid mathematical
calculation [112–114], calendar calculation [17], extreme memory [115, 116], musical
talent [14, 19] or, as mentioned above, absolute pitch ability [14–18, 101–105].
The interindividual heterogeneity of autistic symtoms is further reflected in the un-
clear contribution and interplay of several genetic factors with respect to the etiology
of autism (for a review see [117–121]). This makes it difficult to validly define sub-
types or even prototypes of the condition, hence the terms "spectrum" or "syndrome"
ranging from mild or even subclinical phenotypes to very severe cases [122]. Autis-
tic symptoms in the general population might therefore also be distributed rather
gradually than discrete [122].

1.2.2 Theoretical Frameworks of Autism

In 1985, Baron-Cohen and colleagues [123] proposed in their seminal paper the autis-
tic child might lack the so called theory of mind. Theory of mind is an abstract con-
cept from the field of developmental psychology that describes the ability of most
humans to reason about the intentions and thoughts of other people e.g. perspective
taking, predicting actions etc. [124]. This ability is said to develop between the ages
of 3 to 6 years and has been investigated in a range of studies (see e.g. [125, 126] for
an overview). The mind-blindness theory of autism [123] states that autistic people do
not develop the implicit and/or explicit ability to create a theory of mind and that
this explains the social cognitive and communicative deficits of autism spectrum dis-
orders.
However, since the theory lacks the explanation of non-social symptoms of autism
[127–129] and several studies have failed to replicate the theory of mind deficit [130,
131], a range of other theories to explain autism have emerged. The most famous
ones are the weak central coherence account [127, 132], the enhanced perceptional func-
tioning theory [133] and the Empathizing-Systemizing theory [128, 134].
The weak central coherence account (WCC) proposes a detail-oriented cognitive
style in autism, that is reflected in a superiority of local feature extraction alongside a
relatively weak integration of the features into a global form or contextual meaning
[127, 132]. The term cognitive style has been defined as “(...) a general, non-conscious
preference for processing information in a particular way.” ([43], [135] cited after [43]).
Against the initial version of the theory to date no complete inability of global pro-
cessing [136] is said to underlie non-social anormalities in autism but rather a bias
towards predominant local processing [132]. The enhanced perceptional functioning
theory [133, 137] extends the WCC framework by superior low-level perceptual abil-
ities like increased discrimination of sensory stimuli and a dominance of low-level
perception over higher cognitive functions. The authors also attempt to explain sa-
vant abilities and special skills in autism by means of the enhanced perceptional
functioning theory. Finally, the Empathizing-Systemizing theory [128, 134] tries to
integrate the findings from social and non-social domains within a two component
theory consisting of an empathizing (social cognition deficits, emotion recognition
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etc.) and a systemizing (drive to analyze and interest in systems, weak central co-
herence, enhanced perception, non-social anormalities) domain.

1.2.3 Cognitive and neuroscientific comparison

With respect to the above mentioned findings of autistic traits in absolute pitch mu-
sicians [98, 99] and absolute pitch in autistic individuals (e.g. [16, 103–105], see sec-
tions 1.2, 1.2.1) it is still unclear how this co-occurrence can be explained. As for
the perceptual and cognitive nature of absolute pitch (see two component theory,
section 1.1.4), the WCC account and the enhanced perceptional functioning account
could serve as a common basis. This idea will be outlined in the following sections.

From details to context - developmental shift and cognitive style

When comparing absolute pitch with autism in the light of the above-mentioned
theoretical frameworks it appears intriguingly intuitive to describe absolute pitch as
a more detail-oriented perspective on music and sounds compared to relative pitch.
Keeping Figure 1.1 in mind, absolute pitch possessors are not only able to describe
pitch differences between tones (intervals, relative pitch), but can retrieve pitch class
information (pitch chroma) and therefore label single tones in isolation, i.e. without
a given tonal context or a reference tone/system (see chapter 1.1.1). So what if ab-
solute pitch possessors exhibit a more detail-oriented cognitive or perceptual style
similar as the WCC theory and other frameworks suggest for autism?
Chin [43] has already reviewed evidence for the view of absolute pitch develop-
ment being restricted to a) a developmental phase earlier than the transition from
feature-based to context-based perception (see als section 1.1.3) and b) people with
a predisposition for a more detail-oriented cognitive style:
In 1950, Piaget [138] has for the first time described cognitive phases in the develop-
ment of children. The transition from single feature based to a more integrative view
of the world was described by the shift from the preoperational phase to the phase of
concrete operations between ages 7 and 8, or in other words as a transition from unidi-
mensionality, e.g. single tones, small entities (in music), to multidimensionality, e.g.
relative pitch, intervals, melodies [139]. Later the timeframe of the phase transition
was corrected to 5-7 years by investigations of several authors (e.g. [140, 141]; [142]
cited after [43]). The fact that the transition occurs at this age is already strong evi-
dence for the idea that cognitive style respectively the transition from feature-based
to context-based perception plays an important role in the acquisition of absolute
pitch as for the critical period of AP before the age of 7 (see chapter 1.1.3). Several
studies on children have supported this viewpoint [31, 40, 44].
However, since not all people who receive music education before the age of 7 ac-
quire absolute pitch (see section 1.1.3), the question remains, if perhaps a (genetical)
predisposition for a more detail-oriented cognitive style during the whole life might
be necessary as well. This could also explain the joint occurrence of absolute pitch
and autistic symptoms as autism is also explained by detail-oriented perception and
cognition (see section 1.2.2). Many studies investigating detail-oriented perception
in vision and audition in autism have made use of embedded figures tests [143–147],
hierarchically constructed stimuli with local and global levels [148–152] and illusions
[148, 153–157] (see Figure 1.3).

In contrast, only one study has attempted to experimentally investigate cogni-
tive style in absolute pitch possessors. Costa-Giomi and colleagues [41] presented
absolute pitch and relative pitch musicians and a non-musical control group with a
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FIGURE 1.3: Methods to investigate detail-oriented perception. (a)
Hierarchically constructed stimulus: “H” on global, “S” on local level.
(b) Ebbinghaus Illusion: red circles have the same size but appear
differently depending on the size of the surrounding circles (context).
(c) Embedded Figures Item (created after [158]): The triangle (left) has
to be found in same size, dimension and orientation within a bigger

figure with global meaning (right, solution indicated in red).
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visual hidden figures test and found significant better performance of absolute pitch
possessors on the test compared to both of the other groups, while no difference
between relative pitch musicians and non-musicians were observed [41].

The cognitive style theory could be linked to shared brain connectivity and neu-
rodevelopmental mechanisms between phenomena like absolute pitch and autism.
Neuroanatomical and neurophysiological similarities of autism and absolute pitch
will be reviewed in the following section.

Neurophysiological and -anatomical comparison

Brain anatomical studies and post-mortem investigations have revealed micro-
and macrostructural changes in various brain areas associated with autism (see e.g.
[159] for a review). In general, especially frontal, parietal and temporal regions show
enlargements in autistic individuals ([160, 161] cited after [159]). Strongest differ-
ences are often reported within the frontal cortex and also within the cerebellum (see
[159]). Furthermore, the neurodevelopmental time course of the amygdala might be
altered in autism in terms of an initial overgrowth during childhood followed by a
later similar or even decreased size of this subcortical structure [162, 163].
Interestingly, several studies have found unusual rightward asymmetry of the brain
associated with autism and especially with language delay in autistic individuals
[164]. The authors did among other difference also report reduced leftward asym-
metry with respect to auditory and speech related regions: e.g. Heschl’s Gyrus,
Planum temporale. In light of the discussion of hemispheric differences in absolute
pitch (see section 1.1.4), one might hypothesize that these differences could lead to
higher incidence of absolute pitch in autistic individuals. This idea would be consis-
tent with findings of right-sided differences reflecting differences in pitch encoding
in absolute pitch possessor [83] and smaller right-hemispheric planum temporale
in AP [72]. As a consequence, one might again argue for an early cognitive com-
ponent characterizing absolute pitch ability (see section 1.1.4). Furthermore, frontal
anatomical changes in autism have already been associated with generally reduced
neurophysiological connectivity and as a consequence reduced integration of infor-
mation in autistic individuals [165]. If absolute pitch ability was also reflected by
a detail-oriented cognitive style (see section 1.2.3), this could explain the frequent
occurrence of absolute pitch in autism.
Finally, reduced interhemispheric connections do also stress the idea of undercon-
nectivity and reduced integration in the autistic brain [166]. Recently, this under-
connectivity hypothesis has been researched with the use of mathematical techniques.
The following section will give a very superficial introduction into the methods of
this so called graph theoretical approach and will compare results on brain network
connectivity in autism and absolute pitch.

1.2.4 Brain networks and Graph theory

The human brain fulfills all the criteria of a complex system in that it integrates
information from various external and internal sources and always generates new,
variable behavior and cognition from a largely defined anatomical structure [167].
Based on the given structural connectivity, for example synapses between neurons
or fiber bundles between brain areas, nonlinear dynamic behavior of the neurons or
neuronal populations results in statistical dependencies (functional connectivity) or
causal interactions (effective connectivity).
A promising approach to analyze the structure of brain networks, i.e. the set of
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brain connectivity over long and short distances lies in the use of graph-theoretical
approaches. Graph theory is a method from mathematics to analyze various kinds
of complex systems, e.g. transportation and electrical systems, social networks and
biological systems like cells [168]. Modern imaging techniques allow at least an
approximation of structural and functional connectivity [167]. These structural, ef-
fective, and functional connectivities of the brain can be represented in the form of
an abstract network or graph (see Figure 1.4) with their elements as nodes and their
connectivities as edges [169].

Path length 

Clustering 

FIGURE 1.4: Illustration of Graph theory for brain network anal-
ysis. Electrophysiological activity is reflected in a graph with the
nodes representing the electrode positions (FP1-FT7) and the edges
representing shared activity (coherence, phase lag information etc.)
between the activities of the two electrodes (connectivity network).
The number of edges between two nodes gives the Path length, i.e.
the shortest distance between the nodes and therefore the efficiency
of information flow (integration) between them (purple). Clustering
coefficient measures the number of connections (dark green) between
the neighbours of a node (green) in relation to the amount of neigh-
bours. This is an estimate for Clustering or Modules of a network, or,

in other words, for segregation.

Complex systems in various research areas often exhibit remarkably similar be-
havior at the macroscopic level in that they share organizational principles (such as
the famous small-world principle) despite significant differences in the details of their
elements, and thus the graphs of these networks can be described by the same net-
work parameters [170]. According to Bullmore and Sporns [171] and Sporns [168],
the network structure of the brain is characterized by two opposing principles: the
tendency to form local subsystems and modules (local segregation) while maintain-
ing global interaction and integration of information between the modules (global
integration).
A measure of local segregation is the Clustering Coefficient, which specifies the den-
sity of connections between the neighbours of a node by the number of connections
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between the neighbouring nodes relative to the maximum possible number between
them. Highly interconnected neighbouring nodes thus form a cluster or module.
The average clustering coefficient also provides a measure of the modularity of a
network, that is, the ability of the network to have many segregated modules, and
thus many connections within those modules but few between them. In contrary,
Characteristic Path Length reflects global integration within a network by estimating
the average shortest paths between pairs of nodes in the network. This corresponds
to the number of edges between the two nodes and is a measure of the efficiency of
the communication between them, but not necessarily a measure of spatial (anatom-
ical) distance (see e.g. [168, 172, 173] for an overview about graph theory and net-
work parameters).
Perhaps the most prominent finding with respect to neurodevelopmental differences
in autism is an early overgrowth of the brain in autistic children, which is later fol-
lowed by massive axonal pruning and leads to an underconnectivity of the brain
in adulthood [166, 174], especially between frontal cortex and other brain regions
[175]. The autistic brain exhibits an exaggerated connectivity (hyperconnectivity)
within single brain regions, e.g. sensory and frontal areas, alongside reduced inter-
regional connections (hypoconnectivity) throughout the brain, or in other words
higher segregation and lower integration [165, 175–183]. Interestingly, studies have
revealed similar brain connectivity patterns of hypo- and hyperconnectivities in ab-
solute pitch compared to relative pitch musicians [77, 79, 80].
While brain network connectivity respectively graph theoretical measures have been
associated with autistic symptoms in autism and with absolute pitch performance
in absolute pitch possessors, it is unclear in how far these factors interact as for the
joint occurrence of autistic traits and absolute pitch ability in both populations. Es-
pecially, several authors have suggested that a detail-oriented cognitive style could
be reflected by the characteristic hyper- and hypoconnected brain structure and thus
might be related to both, absolute pitch and autism [17, 43, 101, 165]. However, to
the best of my knowledge, up to date no studies investigating this issue have been
conducted.

1.3 Aims

This doctoral project aims at investigating the cognitive and neurophysiological un-
derpinnings of a possible relation between absolute pitch ability and autistic traits
in absolute and relative pitch professional musicians. In light of the reviewed status
quo in this research area, three main targets where set for the project:

1. Autistic traits Standard diagnostical and personality questionnaires will be used
to try to replicate the positive relationship between absolute pitch proficiency
and autistic traits revealed by [98, 99]. These traits should then be set in relation
to the main ideas for this co-occurrence outlined in the introduction: cognitive
style and brain networks.

2. Cognitive Style Using hierarchically constructed auditory and visual stimuli and
auditory embedded figures tests to measure cognitive style it is hypothesized
that absolute pitch possessors exhibit a more autism-like bias towards feature
based perception and cognition. To make the obtained results comparable to
the autism literature it is tried to parallel the experiments as precisely as possi-
ble with existing studies among autistic individuals and neurotypical controls.
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The general aim is to try to evaluate whether cognitive and perceptual frame-
works of autism could serve to explain the co-occurrence.

3. Brain networks Brain network similarities of hyper- and hypoconnectivities be-
tween absolute pitch and autism have occasionally been reported and used
as explanations for co-occurrence of autistic traits and absolute pitch and cog-
nitive style in autism. To unravel whether autistic traits relate to the hypothe-
sized regional hyper- and global hypoconnectivity in absolute pitch possessors
resting state electroencephalographic measurements will be collected and an-
alyzed with the use of graph theory.
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Chapter 2

General Methods, Materials and
Statistics

The present chapter will shortly introduce the basic methods underlying all three
publications and characterize the sample.

2.1 Participants

Thirty-three relative pitch and thirty-one absolute pitch professional musicians where
recruited mainly from the University for Music, Drama and Media via an online
survey (https://www.unipark.de). The german wide survey included personality
questionnaires, questionnaires regarding musical history and practice time during
lifetime and standardized questionnaires with respect to musicality. A pitch identi-
fication test with 36 sine tones was used as a screening test for absolute pitch. Profes-
sional musicians or music students with location in or near Hannover where invited
to participate in two sessions in the lab of the Institute of Music Physiology and Mu-
sicians’ Medicine. AP and RP groups were created using the online pitch adjustment
test and self-reports of the musicians. Main instruments of AP and RP groups where
comparable (see Figure 2.1.)

2.2 General Setup

The whole project consisted of a range of questionnaires, cognitive experiments to
investigate cognitive style, absolute pitch tests and electroencephalography (see Ta-
ble 2.1). All experiments (AGLT, HL, IMRT, PAT and EEG recording) were pro-
grammed in Python using the toolbox PsychoPy [184, 185]. Statistical analysis was
done with the open source statistical package R (https://www.r-project.org/, ver-
sion 3.5) and network analysis additionally with the toolboxes eeglab [186] and
fieldtrip [187] in MATLAB (MATLAB Release 2014a, MathWorks, Inc., Natick, MA,
USA). Python, R and MATLAB Code are available at my GitHub repository (https:
//github.com/TeresaWe/DrThesis). Results of IMRT were published in Scientific
Reports (see section 3.1), AGLT and HL in Frontiers of Psychology (see section 3.2),
and EEG brain networks in Molecular Autism (see section 3.3). PAT, AQ and control
measures (see Table 2.1) where used for all three publications.

https://www.unipark.de
https://www.r-project.org/
https://github.com/TeresaWe/DrThesis
https://github.com/TeresaWe/DrThesis
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FIGURE 2.1: Main instruments of absolute and relative pitch pos-
sessors. The diagrams show the percentage of the main musical in-

struments separately for each group.
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FIGURE 2.2: Group averages of autistic traits. Absolute pitch pos-
sessors show higher autistic traits (Autism-Spectrum-Quotient) on
subscale imagination as well as marginally on attention to detail and
communication (a) and on total score (b). One point is given for each
item mildly or strongly agreeing with a specific autistic trait (maxi-
mum: total=50, subscale =10, [188]). Error bars reflect standard er-

rors.
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Session Acronym Test Paper

online

MSI Musical Sophistication Index [189] 1-3
hours total hours of musical practice 1-3
GUF Geräuschüberempfindlichkeits-Fragebogen -

PIS Pitch Identification Screening 1-3
E-S Empathizing-Systemizing Test [190] -
AQ Autism Spectrum Quotient [188] 1-3

Hand Edinburgh Handedness Inventory [191] 1-3
demogr Demographic questions, comorbidity 1-3

Session 1

AGLT Auditory Global-Local Test [150] 2
GEFT Group Embedded Figures Test [158] 1

HL Hierarchical Letters [192] 2
ZVT Zahlen-Verbindungs-Test [193] 1-3

AMMA Advanced Measures of Music Audiation [194] 1-3
SPM Raven’s Standard Progressive Matrices [195] 1-3

Session 2

IMRT Interleaved Melody Recognition Test [147, 196] 1
PAT Pitch Adjustment Test (+EEG) 1-3
EO EEG Resting State (eyes open) 3
EC EEG Resting State (eyes closed) 3

TABLE 2.1: Experiments and Measurements. Used questionnaires,
intelligence tests, experiments and electrophysiological measure-
ments are listed in order of the deduction in the sessions. Tests and
Questionnaires during the survey appeared in semi-randomized or-
der. Several tests and questionnaires were used as control variables

or targets (PAT, AQ) in all publications.

2.3 Autism Spectrum Quotient and Pitch Adjustment Test

The Autism-Spectrum-Quotient [188], consists of 50 items with four answers each
and measures autistic traits at five subscales: social interaction, social communica-
tion, imagination, attention to detail and attention switching. Absolute pitch pos-
sessors, as expected, exhibited higher autistic traits than relative pitch possessors -
in general and on subscales (see Figure 2.2 and publications 3.1, 3.2, 3.3).

The Pitch Adjustment Test built after Dohn et al. 2014 [24] was created to mea-
sure fine-graded differences in absolute pitch performance. The task for the partic-
ipants was to aurally adjust a sine wave with a randomly chosen start frequency
until it fits to a target note provided visually as musical label on a PC screen. By
using a USB-Controller (Griffin PowerMate NA 16029, Griffin Technology, 6001 Oak
Canyon, Irvine, CA, USA) participants had the choice between rough (steps of 1/10
semitones) or fine (1/100 semitone resolution) tuning of the frequency. The most
important advantages of this method are, that it is nearly impossible to use relative
pitch strategies because of the randomly chosen frequency in steps of ST/100. Fur-
thermore it allows the precise measurement of the pitch template of the participant.
For example, while some AP possessors might be able to tune the sine wave as close
as 1/10 of a semitone to the target frequency, others might show higher variability.
All subjects adjusted 108 sine waves to the target tones of the 12 pitch classes, each
occurring 6 times. For the task 15 seconds maximum time was given. After 15s the
test proceeded with the next trials unless a button was pressed earlier by the subject
to confirm the current frequency. This lead to trial length ranging from about 3 to 15
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FIGURE 2.3: Absolute Pitch (PAT) performance per subject by group
(AP vs. RP). AP’s deviations were mostly below 100 cent (=1 ST),
while RP’s deviations remained at around 300 cent (=3 ST’s, chance
level). red: smoothed median of absolute deviations of 108 trials
over time (max. 15 s, max. 160-163 time points) per subject, blue:
smoothedgroup median, green = smoothed group mean, black: 95%

confidence interval.

seconds. As visible in Figure 2.3 AP subjects on average reached the requested tar-
get frequency with deviations below one semitone and already at around 5 seconds
(latency mean AP = 5.59s) after onset of the tone. RP’s showed much higher devi-
ation over the whole timespan and higher insecurity after 5 seconds (latency mean
RP’s = 5.80) of adjustment time, even if on average the deviation did not change any-
more onwards. In both groups, cases performing in between AP and RP groups are
visible (see Figure 2.3). However, the AP-like lines of three RP cases might be due
to median estimation from very few trials at the end of the timespan and therefore
comprise plotting artefacts.

Absolute pitch possessors outperformed relative pitch musicians on all pitch
classes with respect to final deviation to target tone (F (1, 6882) = 31.31, p < 2.29
e-8). A main effect of pitch category (post hoc t-tests not significant after Bonferroni-
Holm correction) but no interaction between group and target were found (target:
F(17, 6882) = 1.63, p < 0.049; group x target: F(11,6882) = 1.31, p = 0.213), see Figure
2.4). Latency of the first deviation minimum between current frequency and tar-
get tone (see Figure 2.5) also significantly differed between groups and target notes
(group: F(1, 6881) = 4.94, p < .026; target: F(17, 6881) = 1.95, p < .011; Post hoc t-tests:
E < B: p< .008, E < C#: p< .093, Bonferroni-Holm corrected), while no interactions
were found (F(11, 6881) = 0.95, p = 0.487). Interestingly, the mean latency between
groups only differs by 0.21s. Therefore on average 5 seconds is the time taken by the
participant to adjust the sine wave to the imagined target (whether correct or not)
and no further improvement happens afterwards.
To answer the raised research questions of the present thesis (see section 1.3) the
measurements of autistic traits (Autism-Spectrum-Quotient, AQ) and pitch adjust-
ment test (PAT) introduced in this chapter were set in relation to experiments on
cognitive style in vision and audition as well as to brain network connectivity. This
work is summarized in three publications within the following Chapter ??. Further
methodical and statistical details about AQ and PAT are provided in each publica-
tion as well.
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FIGURE 2.4: Absolute deviation from target tone Means and confi-
dence intervals (95%) of average absolute deviations from target tone
by group (green=RP, blue=AP) and pitch class. AP’s significantly out-
performed RP’s on all pitch categories. Confidence was also higher
in AP respectively variance lower. The main effect of target note did

not reach significant post-hoc t-tests (Bonferroni-Holm correction).
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FIGURE 2.5: Latency of minimum deviation from target tone.
Means and confidence intervals (95%) for latency plotted by group
(green=RP, blue=AP) and pitch class. AP’s reach the minimum devi-
ation significantly earlier than RP’s and tone categories differed sig-
nificantly in latency across groups. A main effect of target note but no
interaction of target and group were found. Only the differences be-
tween E and B and (marginally) E and C# remained significant after

Bonferroni-Holm correction of post-hoc t-tests.
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Chapter 3

Publications

3.1 Enhanced auditory disembedding in an interleaved melody
recognition test is associated with absolute pitch ability

Teresa Wenhart, Ye-Young Hwang & Eckart Altenmüller (2019)1

Wenhart, T., Hwang, Y. & Altenmüller, E. (2019). Enhanced auditory
disembedding in an interleaved melody recognition test is associated with absolute

pitch ability. Scientific Reports. DOI:
http://dx.doi.org/10.1038/s41598-019-44297-x

Author contributions:

Experimental design: TW (80%), EA (20%)
Programming of Experiments: TW(40%), Hannes Schmidt(30%), Pablo Carra(15%),
Artur Ehle (15%)
Conducting the experiments: TW (60%), Fynn Lautenschlänger(35%), YH (5%)
Data acquisition and pre-processing, Statistical analysis: TW (80%), YH (20%)
Writing of manuscript: TW
Contribution to the writing and revision of manuscript: EA, YH.

1The current chapter corresponds to an article already published in the journal Scientific reports 9,
Article number: 7838 (2019)

http://dx.doi.org/10.1038/s41598-019-44297-x
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3.1.1 Abstract

Absolute pitch (AP) and autism have recently been associated with each other. Neu-
rocognitive theories of autism could perhaps explain this co-occurrence. This study
investigates whether AP musicians show an advantage in an interleaved melody
recognition task (IMRT), an auditory version of an embedded figures test often in-
vestigated in autism with respect to the these theories.
A total of N=59 professional musicians (AP=27) participated in the study. In each
trial a probe melody was followed by an interleaved sequence. Participants had to
indicate as to whether the probe melody was present in the interleaved sequence.
Sensitivity index d’ and response bias c were calculated according to signal detec-
tion theory. Additionally, a pitch adjustment test measuring fine-graded differences
in absolute pitch proficiency, the Autism-Spectrum-Quotient and a visual embedded
figures test were conducted.
AP outperformed relative pitch (RP) possessors on the overall IMRT and the fully in-
terleaved condition. AP proficiency, visual disembedding and musicality predicted
39.2% of variance in the IMRT. No correlations were found between IMRT and autis-
tic traits.
Results are in line with a detailed-oriented cognitive style and enhanced percep-
tional functioning of AP musicians similar to that observed in autism.

Keywords:

absolute pitch, disembedding, autistic traits, musicians, auditory streaming, cognitive style,
enhanced perception
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3.2 A tendency towards details? Inconsistent results on au-
ditory and visual local-to-global processing in absolute
pitch musicians

Teresa Wenhart & Eckart Altenmüller (2019)2

Wenhart, T. & Altenmüller, E. (2019). A tendency towards details? Inconsistent
results on auditory and visual local-to-global processing in absolute pitch

musicians. Frontiers in Psychology. DOI:
http://dx.doi.org/10.3389/fpsyg.2019.00031

Author contributions:

Experimental design: TW (80%), EA (20%)
Programming of Experiments: TW (40%), Hannes Schmidt (30%), Pablo Carra (15%),
Artur Ehle (15%)
Conducting the experiments: TW (60%), Fynn Lautenschlänger (35%), Ye-Young
Hwang (5%)
Data acquisition and pre-processing, Statistical analysis: TW
Writing of manuscript: TW
Contribution to the writing and revision of manuscript: EA.

2The current chapter corresponds to an article already published in the journal Frontiers of Psy-
chologie, 2019, Vol. 10

http://dx.doi.org/10.3389/fpsyg.2019.00031
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3.2.1 Abstract

Absolute pitch, the ability to name or produce a musical tone without a reference, is a
rare ability which is often related to early musical training and genetic components.
However, it remains a matter of debate why absolute pitch is relatively common in
autism spectrum disorders and why absolute pitch possessors exhibit higher autistic
traits. By definition absolute pitch is an ability that does not require the relation of
tones but is based on a lower-level perceptual entity than relative pitch (involving
relations between tones, intervals, and melodies).
This study investigated whether a detail-oriented cognitive style, a concept bor-
rowed from the autism literature (weak central coherence theory), might provide
a framework to explain this joint occurrence. Two local-to-global experiments in
vision (hierarchically constructed letters) and audition (hierarchically constructed
melodies) as well as a pitch adjustment test measuring absolute pitch proficiency
were conducted in 31 absolute pitch and 33 relative pitch professional musicians.
Analyses revealed inconsistent group differences among reaction time, total of cor-
rect trials and speed-accuracy-composite-scores of experimental conditions (local vs.
global, and congruent vs. incongruent stimuli). Furthermore, amounts of interfer-
ence of global form on judgements of local elements and vice versa were calculated.
Interestingly, reduced global-to-local interference in audition was associated with
greater absolute pitch ability and in vision with higher autistic traits.
Results are partially in line with the idea of a detail-oriented cognitive style in ab-
solute pitch musicians. The inconsistency of the results might be due to limitations
of global-to-local paradigms in measuring cognitive style and due to heterogeneity
of absolute pitch possessors. In summary, this study provides further evidence for a
multifaceted pattern of various and potentially interacting factors on the acquisition
of absolute pitch.

Keywords:

absolute pitch, cognitive style, week central coherence, autistic traits, musicians
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3.3 Autistic traits, resting-state connectivity and absolute pitch
in professional musicians: shared and distinct neural fea-
tures

Teresa Wenhart, Richard A. I. Bethlehem, Simon Baron-Cohen & Eckart
Altenmüller (2019)3

Wenhart, T., Bethlehem, R.A.I., Baron-Cohen, S. & Altenmüller, E. (2019).
Autistic traits, resting-state connectivity and absolute pitch in professional
musicians: shared and distinct neural features. Molecular Autism. DOI:

http://dx.doi.org/10.1186/s13229-019-0272-6

Author contributions:

Experimental design: TW (80%), EA (20%)
Programming of Experiments: TW(40%), Hannes Schmidt(30%), Pablo Carra(15%),
Artur Ehle (15%)
Conducting the experiments: TW (60%), Fynn Lautenschlänger(35%), Ye-Young
Hwang (5%)
Data acquisition and pre-processing: TW
Network analysis and Statistical analysis: TW (70%), RB (30%)
Writing of manuscript: TW
Contribution to the writing and revision of manuscript: EA, RB, SB.

3The current chapter corresponds to an article already published in the journal Molecular Autism,
2019, 10:20

http://dx.doi.org/10.1186/s13229-019-0272-6
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3.3.1 Abstract

Background
Recent studies indicate increased autistic traits in musicians with absolute pitch
and a higher proportion of absolute pitch in people with autism. Theoretical ac-
counts connect both of these with shared neural principles of local hyper- and global
hypoconnectivity, enhanced perceptual functioning and a detail-focused cognitive
style. This is the first study to investigate absolute pitch proficiency, autistic traits
and brain correlates in the same study.
Sample and Methods
Graph theoretical analysis was conducted on resting state (eyes closed and eyes
open) EEG connectivity (wPLI, weighted Phase Lag Index) matrices obtained from
31 absolute pitch (AP) and 33 relative pitch (RP) professional musicians. Small
Worldness, Global Clustering Coefficient and Average Path length were related to
autistic traits, passive (tone identification) and active (pitch adjustment) absolute
pitch proficiency and onset of musical training using Welch-two-sample-tests, cor-
relations and general linear models.
Results
Analyses revealed increased Path length (delta 2-4 Hz), reduced Clustering (beta
13-18 Hz), reduced Small-Worldness (gamma 30-60 Hz) and increased autistic traits
for AP compared to RP. Only Clustering values (beta 13-18 Hz) were predicted by
both AP proficiency and autistic traits. Post-hoc single connection permutation tests
among raw wPLI matrices in the beta band (13-18 Hz) revealed widely reduced in-
terhemispheric connectivity between bilateral auditory related electrode positions
along with higher connectivity between F7-F8 and F8-P9 for AP. Pitch naming abil-
ity and Pitch adjustment ability were predicted by Path length, Clustering, autistic
traits and onset of musical training (for pitch adjustment) explaining 44% respec-
tively 38% of variance.
Conclusions
Results show both shared and distinct neural features between AP and autistic traits.
Differences in the beta range were associated with higher autistic traits in the same
population. In general, AP musicians exhibit a widely underconnected brain with
reduced functional integration and reduced small-world-property during resting
state. This might be partly related to autism-specific brain connectivity, while dif-
ferences in Path length and Small-Worldness reflect other ability-specific influences.
This is further evidence for different pathways in the acquisition and development
of absolute pitch, likely influenced by both genetic and environmental factors and
their interaction.

Keywords:

absolute pitch, autistic traits, brain networks, graph theory, musicians, electroencephalogra-
phy
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Chapter 4

Discussion

The following sections will summarize and discuss the main findings presented in
the publications of chapter ?? and provide an outlook towards future research direc-
tions.

4.1 Main findings

In section 1.3 three main aims of the present thesis have been introduced. The results
of the publications are summarized in order of the research aims.

4.1.1 Autistic traits

With the use of the Autism-Spectrum-Quotient [188] previous results by Dohn et al.
(2012, [98]) were replicated showing generally more autistic traits in absolute pitch
possessors and specifically on the subscales imagination, communication and atten-
tion to detail. This expected result confirms the hypothesis and the aim to search
for explanations of a joint occurrence of absolute pitch and autistic traits (see section
1.2).

4.1.2 Cognitive style

Visual and auditory embedded figures tests (Publication 3.1) and hierarchically vi-
sual and auditory stimuli (Publication 3.2) were psychophysically presented to ab-
solute and relative pitch possessors.
Interleaved melody recognition test and performance time on a standard embedded
figures test from the autism literature [147, 158] provided strong evidence for the hy-
pothesis of a local-perceptual advantage in absolute pitch possessors consistent with
Costa-Giomi et al. (2006, [41]). Absolute pitch possessors showed an advantage
in recognizing interleaved melodies in general, and especially of fully interleaved
melodies. This can be explained by a detail-oriented cognitive style or enhanced
perceptual functioning making use of pitch label information. Furthermore, per-
formance on auditory and visual embedded figures tests were correlated pointing
towards an association between visual and auditory cognitive style and a general
cognitive bias being measured. However, no correlations were obtained between
extent of detail-oriented cognitive bias and autistic traits (neither in audition nor in
vision). The results are consistent with Bouvet et al. (2013, [147]), who showed an
advantage for autistic children in the fully embedded condition. In contrast to autis-
tic children in their study, however, absolute pitch possessors were not impaired in
the separation conditions [147].
In contrast, hierarchically local-to-global tests revealed inconsistent results with re-
spect to the influence of absolute pitch and autistic traits on interference of global
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or local elements on perception of the respective other. Only two selective interfer-
ence effects of reaction times and accuracy scores in the auditory paradigm were
correlated with absolute pitch performance and showed a tendency towards more
detail-oriented perception being associated with absolute pitch proficiency. Inter-
estingly, in vision reduced global-to-local interference was associated with higher
autistic traits. The failure to yield consistent results across reaction time, accuracy
and combined scores for both local-to-global and global-to-local interference pointed
towards methodically concerns in the use of hierarchical stimuli to investigate cog-
nitive style. This is consistent with the view of e.g. Kimchi & Palmer (1982, [197]).
In summary, the two studies on cognitive style partially confirmed the hypothe-
sis of a tendentially more detail-oriented perception and cognition associated with
absolute pitch possessors, consistent with the idea of Chin (2003, [43]). This detail-
oriented perception and cognition is partially, but not necessarily, bound to higher
autistic traits revealed in the same sample.

4.1.3 Brain networks

Finally, electroencephalographic measurements of the resting brain were analyzed
using a graph theoretical network approach to quantify segregation and integration
capability of the participants’ brains (Publication 3.3). Results revealed a generally
underconnected brain network of absolute pitch possessors with reduced clustering,
reduced integration and reduced small-worldness in beta, delta and gamma bands,
respectively. Post-hoc single connection comparisons pointed towards especially
reduced interhemispheric connections between temporal electrodes. Interestingly,
reduced clustering was also related to higher autistic traits. Brain network measures
and autistic traits together explained roughly 38% of pitch adjustment and 44% of
variance of pitch naming ability of professional musicians. In general, the results
show a brain connectivity endophenotype of absolute pitch possessors partly over-
lapping with that one observed in autism [165, 166, 178, 179] and reported in pre-
vious studies among absolute pitch possessors [77]. Importantly, this is partly even
associated with autistic traits in the same absolute pitch possessors. Brain network
characteristics therefore argue for an integration-deficit hypothesis of absolute pitch.

4.2 General Discussion

4.2.1 Absolute pitch - a heterogeneous ability

Absolute pitch, the unique ability to be able to name or produce a musical tone
without the use of any kind of reference [1] has been said to depend both on genetic
factors and on an early sensitive period (see section1.1.3). Specifically it has been
acclaimed as

“(...) one of the cleanest examples of a human cognitive ability that arises from
the interaction of genetic factors and environmental input during development.
In particular, unlike most other cognitive functions (including language and
memory, which are influenced by multiple factors and interact with many gen-
eral brain functions), AP is distributed relatively discretely in the population,
and its expression is neatly encapsulated, as it seems unrelated to most other
cognitive functions.” (Zatorre, Nature Neuroscience, 2003, [47]).

But perhaps absolute pitch is not as clear and “clean” as thought. Other authors,
e.g. Wengenroth et al. (2014, [83]), have already argued for a more steadily or even
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a uniform distribution of absolute pitch [83]. The present research indicates that
autistic traits, cognitive style and brain network connectivity play a role in this abil-
ity. But (1) inconsistency of results on cognitive style, (2) the increased, but only in
some absolute pitch possessors critically high autistic traits, (3) the missing correla-
tion of cognitive style with autistic traits (4) and the brain network characteristics
only partly overlapping with autism speak for a heterogeneous ability. The question
if and to what extend a co-occurrence of autistic traits and absolute pitch can be ex-
plained by shared cognitive and neuroscientific characteristics might therefore only
be answered on subgroup level. Or, in other words, autistic traits, cognitive style
and brain network connectivity might be related to absolute pitch (and perhaps to
each other) only within a subgroup of absolute pitch possessors. However, in the
present study, subgroup analysis was not possible because of restrictions with re-
spect to sample size.
Nevertheless, the present work shows, that an integrative view of several influenc-
ing factors and characteristics of the ability (see Figure 4.1) alongside a brain network
perspective is necessary to get more insight into the specific relations between brain,
special ability and disability.

Absolute 
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onset/critical 
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training 
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development 
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FIGURE 4.1: Update: Influences on the acquisition of Absolute
Pitch. If and to what extend an individuum exhibits absolute pitch
ability relates to various factors indicated with arrows. As a results of
the present studies cognitive style and autistic traits are also impor-
tant. Interrelation of influencing factors (e.g. autistic traits and brain

network) not shown.
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4.2.2 Absolute pitch and autism - a common framework?

The question whether the weak central coherence account [132], the enhanced per-
ceptional functioning theory [133, 137] or other cognitive theories of autism can ex-
plain the co-occurrence of autistic traits and absolute pitch cannot finally be resolved
in this thesis. Rather it seems that autistic traits and the perceptual-cognitive char-
acteristics only comprise one among a range of other influencing factors (see section
4.1). While enhanced auditory disembedding (Publication 3.1), and the tendency
towards a more detail-oriented processing of auditory and visual hierarchical stim-
uli (Publication 3.2) speak for enhanced perceptual functioning respectively weak
central coherence, the inconsistency of the results and the only partially occurring
correlations with autistic traits weaken the interpretation.
Based on the results from network analysis (Publication 3.3) it is hypothesized, that
both shared and distinct features of autism and absolute pitch exist. Perhaps, while
in general, early musical training during a cognitively sensitive period is important
for the acquisition of absolute pitch (see section 1.2.3), in a subgroup of AP’s, a life-
long tendency for detail-oriented information processing (Publications 3.1, 3.2) and
a less integrative brain network (Publication 3.3) might increase the likelihood to
develop absolute pitch ability - even later in life [14, 46]. The interrelation or even
a causal relation of brain connectivity, genetic factors and cognitive style, however,
has yet to be explained. Nevertheless, a predisposition for detail-oriented processing
or less integrative brain connectivity might explain the on average and individually
(often subclinically) higher autistic traits in absolute pitch possessors and the higher
incidence of absolute pitch in autism. Therefore, the onset of music exposition might
be of less importance in those populations, consistent with the results of Gervain et
al. (2013, [46]) and Heaton et al. (1998, [14]).
In conclusion, this might lead to subgroups of absolute pitch possessors that are dis-
tinguished by either a more genetically (neurocognitive predisposition) or a more
experience based etiology of absolute pitch. However, studies relating genetic influ-
ences in the acquisition of absolute pitch to cognitive style, brain network features
and autistic traits are missing as are subgroup analyses with much higher sample
sizes.

4.2.3 Strengths and Limitations

Several limitations of the studies have to be discussed:
First, no autistic and neurotypical musically matched control groups were included.
A direct comparison with cognitive, neurophysiological and personality traits of
autistic people might have helped to understand the differences between relative
and absolute pitch possessors. Initially there was indeed a plan to include the two
subgroups, but the effort failed due to problems to recrute and motivate autistic in-
dividuals to participate in such a long study with several appointments in the lab.
Furthermore, the 10 autistic subjects that could be measured showed a high hetero-
geneity of musical experience and comorbid disorders. Therefore an even higher
sampled size would have been required to account for all of these covariables. Espe-
cially, four of the autistic participants already reported to have absolute pitch ability.
Second, as the present study is a cross-sectional study, no interpretations can be
made on the acquisition and development of absolute pitch. Also, the hypothetical
interpretation of possibly existing subgroups within the population of absolute pitch
possessors can only be proven by subgroup analyses on bigger sample sizes.
Third, no correlation analyses between results from cognitive experiments and brain
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network analysis were performed. This could have helped to get an insight into the
interrelation between them. This was mainly due to the inconsistency of cognitive
results (Publication 3.2) and of the relation of cognitive results to autistic traits (Pub-
lication 3.1).
Nevertheless, the project has for the first time investigated cognitive style, autistic
traits and brain networks in the same subjects with absolute and relative pitch abili-
ties. Especially with respect to the dimension of the study (one hour survey, 4 hours
lab) the sample size of N=64 subjects including the 31 comparably rare absolute pitch
possessors is a big strength of the study.

4.2.4 Future directions

Apart from the already mentioned necessity to analyze larger populations of ab-
solute pitch possessors towards existing subgroups, it would be worth to conduct
longitudinal studies on neurotypical children in the future. This would help to dis-
entangle the influence of genetic, personality and experience based factors on the ac-
quisition of absolute pitch and on cognitive style and brain networks. Furthermore,
genome-based studies, which are up to date missing in absolute pitch possessors,
could be included. This would in turn have implications for music education and
education of children in general, if, as expected, some exhibit genetically predispo-
sitions towards a different view of the world. Whether one does or does not see the
forest behind the trees could then be accounted for.

4.3 Conclusion

Absolute pitch is a heterogeneous ability and associated with higher autistic traits on
average and in some individuals. A tendency towards more feature-based percep-
tion and cognition alongside reduced integration in functional resting-state neuro-
physiologic networks reflect similarities to autism. However, distinct neurophysio-
logical characteristics and influencing factors are also present. In some AP’s a predis-
position towards a detail-oriented cognitive style, autistic personality traits and an
underconnected brain structure might encompass an alternative etiology of absolute
pitch that depends less on early exposure to musical training. The question how each
human being experiences the world (qualia) is not only of great importance in philo-
sophical discussions, but also to understand clinically and non-clinically groups of
special people: autistic people and absolute pitch possessors.
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